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Abstract

A famous phenomenon in circle-maps and synchronisation problems leads to a two-parameter bifurcation diagram
commonly referred to as the Arnol 0d tongue scenario. One considers a perturbation of a rigid rotation of a circle, or a
system of coupled oscillators. In both cases we have two natural parameters, the coupling strength and a detuning param-
eter that controls the rotation number/frequency ratio. The typical parameter plane of such systems has Arnol 0d tongues
with their tips on the decoupling line, opening up into the region where coupling is enabled, and in between these Arnol 0d
tongues, quasi-periodic arcs. In this paper, we present unified algorithms for computing both Arnol 0d tongues and quasi-
periodic arcs for both maps and ODEs. The algorithms generalise and improve on the standard methods for computing
these objects. We illustrate our methods by numerically investigating the Arnol 0d tongue scenario for representative exam-
ples, including the well-known Arnol 0d circle map family, a periodically forced oscillator caricature, and a system of cou-
pled Van der Pol oscillators.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Many interesting problems in science and engineering lead to models involving either periodically forced
oscillators or coupled oscillators. Natural parameters to vary in the periodically forced oscillator setting
are the forcing amplitude and the forcing period/frequency. In the coupled oscillator setting, coupling strength
is a natural parameter, with a typical second parameter, often referred to as a ‘‘detuning’’ parameter, control-
ling the relative frequencies of the two coupled oscillators. The two settings can be unified by viewing period-
ically forced oscillators as coupled oscillators, with one-way coupling – the forcing amplitude corresponding to
the coupling strength.
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The most prominent phenomenon in these systems is the transition between phase locking (also called
entrainment or synchronisation) and quasi-periodicity. Phase locking produces a periodic solution which
generically persists as parameters are varied. In contrast, quasi-periodicity is a codimension-one phenomenon
which is thus generically destroyed by perturbation. The result is a well-known bifurcation diagram in the two-
parameter plane called the ‘‘Arnol 0d tongue’’ scenario [1–6,14,17,18,21,26,28,29,37]. It has a countable collec-
tion of Arnol 0d tongues, emanating from ‘‘rational’’ points on the zero forcing/coupling axis, and opening up
into regions where the coupling strength is turned on. Each tongue corresponds to phase locked solutions for
which the two frequencies of the oscillators satisfy x1/x2 = p/p for some integers p and q. In between the ton-
gues, emanating from all the ‘‘irrational’’ points on the zero forcing/amplitude axis, are curves of parameters
corresponding to quasi-periodic flow on a torus with an irrational frequency ratio x1/x2. This scenario is gen-
eric for weakly coupled oscillators [1,5]. A similar – but not identical – Arnold tongue scenario occurs in the
neighbourhood of a Neimark–Sacker curve [6,26,37]. We focus in this paper on continuation from zero forc-
ing amplitude, but arrive at a Neimark–Sacker curve by continuation in the second and third of our three
examples in Section 4. Look ahead to examples of these two-parameter bifurcation diagrams in Figs. 5, 9, 13.

There is a variety of ways in which we can model coupled oscillators. The simplest is as a flow in S� S.
Embedding each oscillator in Rni , i = 1,2, leads to the more general setting of a flow in Rn1 � Rn2 . In the decou-
pled case this flow has an invariant two-torus, which is the product of two limit cycles of the individual oscilla-
tors. Assuming these limit cycles are hyperbolic attractors, this two-torus will persist, at least for small coupling
strengths. This flow in Rn1 � Rn2 is often studied by reduction to a Poincaré return map of Rn1þn2�1 by sampling
the state of the system, for example, as it passes in a specified direction through a well-chosen hyperplane. In the
periodically forced oscillator case, this return map can be further reduced to a simple stroboscopic map of the
flow in Rn1 at the time period of the uncoupled limit cycle in Rn2 . This is possible because the flow in Rn2 is decou-
pled from the flow in Rn1 . The reduction can also be thought of as from a periodic non-autonomous flow in Rn1 to
an autonomous map in Rn1 . The invariant two-torus in the original flow becomes an invariant circle for either
the Poincaré map of Rn1þn2�1 or the stroboscopic map of Rn1 . This allows one further reduction, by restricting
attention to the invariant circle, from the maps of Rn to circle maps. This is the motivation for the Arnol 0d sine
circle map family which we study in Section 4.1.

Because the invariant circle is not guaranteed to persist globally in the parameter space, we study a more
general family in Section 4.2. This family is intended to exhibit generic properties of a Poincaré return map
generated by a periodically forced planar oscillator. We call this map the periodically forced oscillator carica-
ture map family. It has been studied previously in [27,28,31,32]. Note that both the Arnol 0d circle maps and
the caricature maps provide a significant computational shortcut by defining the maps directly, rather than
requiring integration of differential equations to define each iterate. Our third family, however, a system of
two linearly coupled Van der Pol oscillators, is defined directly from the following system of differential
equations:
€xþ eðx2 � 1Þ _xþ x ¼ aðy � xÞ;
€y þ eðy2 � 1Þ _y þ ð1þ bÞy ¼ aðx� yÞ;
We look briefly at this system now, to preview some of the main results of the paper. Specifically, we compare
the computation of certain Arnol 0d tongues via traditional methods with the computational algorithms intro-
duced in this paper.

The coupled Van der Pol system has been studied previously in [17,34,36]. We re-investigate it in more
depth in Section 4.3. This system is in the coupled oscillator setting introduced above, with coupling strength
a and the detuning parameter b. Hence, the (b,a) parameter plane exhibits the Arnol 0d tongue scenario and
our goal is to compute a preferably large set of these tongues. Since the boundaries of an Arnol 0d tongue are
loci of saddle-node or fold bifurcations [2,3,17], we used the continuation package AUTO [16] to compute
such fold curves for several Arnol 0d tongues. A standard method for computing an Arnol 0d tongue is to locate
a periodic point in the tongue, follow it to a saddle-node bifurcation, and then switch to continue the saddle-
node bifurcation curve in a and b as the boundary of the tongue. Fig. 1 shows the first six tongues correspond-
ing to the periods 1, 2, 3, 4 and 5. We found it not only very hard to obtain suitable start data, but we were also
unable to continue the curves all the way down to the zero coupling line a = 0. This is not due to a limitation
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Fig. 1. Some Arnol 0d tongues of the system of two coupled Van der Pol oscillators for e = 1, computed by fold continuation. Numerical
problems prevented most continuations from reaching a = 0.
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of the package AUTO [16]. The continuation of saddle-node curves seems to be ill-posed near the line a = 0
because the tongues are so narrow. Although the tongues generically open at a finite angle [18], the angle
decreases, and therefore the ill-posedness becomes worse, as the period q of the Arnold tongue increases.
We also note that the generic finite angle condition often fails in common examples such as the Arnold sine
map discussed in Section 4.1 due to the finite Fourier series expansion of the forcing function sin(x). The con-
tinuation problems illustrated in Fig. 1 should be compared with the results of our algorithms displayed in
Fig. 13, where we display a large set of tongues, each one continued from a = 0.

In this paper, we present algorithms that allow the numerical investigation of the Arnol 0d tongue scenario
in a two-parameter plane. More precisely, we consider two-parameter families of maps
x 7! f ðx; a; bÞ; f : Rn � R� R! Rn; ð1Þ

and two-parameter families of ordinary differential equations (ODEs)
_x ¼ f ðx; a; bÞ; f : Rn � R� R! Rn; ð2Þ

where f is in both cases sufficiently smooth in all arguments. That is, the map f in (1) is at least of class C2 and
the right-hand side f in (2) is at least of class C1þL. Both functions are assumed to have a higher degree of
smoothness if required by a numerical procedure that we employ. Throughout this paper we assume that
the parameter a plays the role of a coupling strength and that b is a detuning parameter controlling the ratio
of frequencies in the system. The systems are assumed to have an invariant torus at a = 0, most commonly an
invariant circle in the map setting, and an invariant two-torus in the ODE setting. These two general settings
include all the scenarios discussed above in this introduction. In both settings the (b,a) parameter plane fea-
tures Arnol 0d tongues with tips at the line a = 0.

The computations of Arnol 0d tongues and quasi-periodic arcs are two-parameter continuations by nature
[2,3,17,36]. In all the considerations that follow, we aim at using pseudo arc-length continuation. That is, we
derive algebraic systems that have one more variable than equations, where the variables include both param-
eters a and b. Our arc-length continuation method automatically amends these systems with a so-called arc-
length condition, which leads to systems of equations that have as many variables as equations. The arc-length
continuation method is well-posed if the objects that are continued form a C1-family in combined parameter
and phase space. Our method for Arnol 0d tongues continues families of periodic orbits and differentiability of
these families is a standard result under our assumptions made above. That quasi-periodic arcs are smooth as
well is less trivial and differentiability results can be found in, for example [7,8].

In Section 2, we generalise ideas introduced previously [27,32] and construct algorithms for Arnol 0d ton-
gues for general n-dimensional maps and ODEs. In Section 3, we combine ideas in [10,22,36] with a two-point



F. Schilder, B.B. Peckham / Journal of Computational Physics 220 (2007) 932–951 935
boundary value problem setting and continuation techniques to compute quasi-periodic arcs that sit in
between the Arnol 0d tongues. The performance of our methods is demonstrated with three examples in Section
4: an embedded Arnol 0d family in Section 4.1, a generic caricature example in Section 4.2 and the system of
coupled Van der Pol oscillators in Section 4.3. We conclude our paper in Section 5 with a discussion and some
future directions.

2. Computation of Arnol 0d tongues

For simplicity, we first restrict our discussion to the map case and assume a one-dimensional invariant circle
at a = 0. In this setting, an Arnol 0d tongue can be considered as the projection of a so-called resonance surface
to the two-parameter plane [27,28,31,32]. A ‘‘p/q resonance surface’’ is defined as the connected component in
the phase · parameter space Rn � R� R of period-q points with rotation number p/q, that is, as a connected
set of zeroes of fq(x,a,b) � x. Assuming the invariant circle is normally hyperbolic and that the rotation num-
ber is a hyperbolically monotonic function of b at a = 0, the implicit function theorem guarantees that the
local continuation of the surface is a cylinder. Several parametrisations of such resonance surfaces for planar
maps have been investigated in [32]. Our algorithm generalises a variant of one of these parametrisations to
higher-dimensional maps; later in this section we adapt the same idea to the ODE case. See Section 5 for a
discussion of potential limitations of this parametrisation for continuation.

We use the following typical example to illustrate both the circular topology of a constant a cross-section
and the idea of our arc length parametrisation. Consider a family of invariant circles of a planar map for
parameter values in the vicinity of a 1/2 Arnol 0d tongue as depicted in Fig. 2, where we superimpose the
(b,a) plane with the (b,x1) plane to show the significance of the 1/2 Arnol 0d tongue. However, we keep a con-
stant as indicated with the constant-a line in the base plane of the figure. Now imagine a change of b along the
constant-a line such that we cross the 1/2 tongue from left to right. The dynamics on the invariant circle is
quasi-periodic or asymptotic to a high-periodic point for b outside but close to the tongue. For b on the
boundary of the tongue, a period-two saddle-node bifurcation occurs and two period-two orbits are born
on the invariant circle. Relative to the circle, one of these is stable (solid dots) and the other unstable (circles).
As we continue to change b along the constant-a line, these two period-two orbits move along the invariant
circle and collide with new partners in a period-two saddle-node bifurcation for b at the right-hand boundary
of the 1/2 tongue. The path traced out by the period-two points in the full b · phase space is a smooth closed
figure-eight curve, a closed curve (circular one-parameter family) of period-two orbits. We call this curve a
constant-a cross-section.
Fig. 2. A b-family of invariant circles of a planar map forms a tube in the (b,x1,x2)-space. A pair of period-two orbits exists on the
invariant circle for b values within an Arnol 0d tongue, one attracting (solid dots) and one repelling (circles). These orbits trace a smooth
curve on the tube and appear and vanish in saddle-node bifurcations at the left and right boundary of the 1/2 tongue.
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The (a, s) parametrisation of a resonance surface. If we introduce a suitable arc-length parametrisation for
constant-a cross-sections as explained in the next two sections, then we can think of continuing this entire fam-
ily of orbits with respect to the parameter a. Thereby, the constant-a cross-sections become closed coordinate
lines on the resonance surface. We call this parametrisation of a resonance surface the ‘‘(a, s) parametrisation’’.
In the actual computation we restrict the constant-a cross-sections to its fundamental domain by identifying
permutations of the same orbit. We can assume that the number of mesh points required to approximate
the fundamental domain with a certain accuracy stays constant as q increases. Hence, the dimension of our
system of equations and the computation time will grow only linearly with q instead of being proportional
to q2.

The considerations above also explain why it is so hard to compute high-period Arnol 0d tongues by fold
continuation: the saddle-node bifurcations are the maxima and minima of b with respect to arc-length. With
fold continuation one computes a locus of local extrema of a function that hardly varies if the tongue is very
narrow. Especially as a approaches zero, the tongue widths approach zero, and b as a function of the arc
length tends to a constant function.
2.1. Algorithm for maps

The above discussion leads to the following algorithm for computing the (a, s) parametrisation of a reso-
nance surface; the boundaries of the Arnol 0d tongue can then be obtained as the minima and maxima that
b assumes. We set up a system of equations that uniquely determines a circular one-parameter family of peri-
odic orbits. In the next subsection we replace the periodic orbit condition with a two-point boundary value
problem to obtain a method for ODEs. We denote by xq :¼ fxq

1; x
q
2; . . . ; xq

qg 2 Rnq the period-q orbit space
and by n = (xq,a) an ordered pairing of a period-q orbit and a real number. We define the distance between
two such pairs n = (xq,a) and g = (yq,b) in the ‘‘orbit cross parameter space’’ as
dðn; gÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

i¼1

kxq
i � yq

i k
2
2 þ ða� bÞ2

s
; ð3Þ
where iÆi2 denotes the Euclidean norm in Rn. A smooth closed curve of period-q orbits can now be represented
as a periodic function n(s) = (xq(s),b(s)), where s is the arc-length with respect to the distance d as defined in
(3). We approximate the fundamental domain of such a closed curve by linear interpolation on N mesh points
nj ¼ ðxq

�j; bjÞ, where xq
�j refers to the full jth period-q orbit. If we demand that the mesh points are equally

spaced with respect to the distance (3), then these points satisfy the following system of nonlinear equations
xq
1j ¼ f ðxq

qj; a;bjÞ; ð4Þ
xq

2j ¼ f ðxq
1j; a;bjÞ; ð5Þ

..

.

xq
qj ¼ f ðxq

q�1;j; a; bjÞ; ð6Þ
dðnj; njþ1Þ ¼ h; j ¼ 1; . . . ;N � 1; ð7Þ
dðnN ; �n1Þ ¼ h; ð8Þ
P ðnÞ ¼ 0; ð9Þ
where j = 1, . . . ,N and �n :¼ ðfxq
pð1Þ; x

q
pð2Þ; . . . ; xq

pðqÞg; aÞ is the ordered pair with the one-shifted orbit of n. The

cyclic permutation p is defined as p(i) = i + j, where j is the smallest natural number such that pj = ±1modq.
The positive sign denotes a clockwise and the negative sign an anti-clockwise shift, in our implementation we
use the clockwise shift. For example, for a 2/3 tongue we have �n1 ¼ ðfx3

31; x
3
11; x

3
21g; aÞ; see also Fig. 3.

The variable h denotes the unknown length of the line segments connecting two successive mesh points.
Eqs. (4)–(9) form a system of nqN + N + 1 equations for the nqN + N + 1 + 1 unknowns xq

ij, bj, a and h.
The ‘‘missing equation’’ is the arc-length condition automatically added by our continuation algorithm.
The last equation P(n) = 0 is a scalar phase condition, which is necessary to fix the initial point n1 on our



Fig. 3. The permutation p can be interpreted as a composition p: = v�1 � w � v, where v maps the dynamic order 1–2–3 of a 2/3 orbit to
the geometric order 1–3–2, and w is the clockwise shift by one. The point x3

1N approaches x3
31, and so on. The dynamic order is assumed to

be clockwise and the dynamics is indicated by the grey arrows with label f.

F. Schilder, B.B. Peckham / Journal of Computational Physics 220 (2007) 932–951 937
branch. A typical phase condition is the so-called Poincaré condition xq
11;k � c ¼ 0 for some suitable value of

k 2 {1, . . . ,n} and c 2 R, that is, the kth component of the initial point of the orbit j = 1 is fixed to the value c.
Note that the value p of a p/q Arnol 0d tongue enters implicitly in condition (8) by means of the permutation p.

2.2. Algorithm for ODEs

To obtain an algorithm for Arnol 0d tongues of an ODE, we have to replace the period-q orbit conditions
(4)–(6) for maps by a suitable boundary value problem for periodic orbits of an ODE. The orbit space Rqn for
maps is now replaced by the function space X :¼ fxi : ð0; 1Þ ! Rn; i ¼ 1; . . . ; qg of segmented paths in the
phase space. We do not explicitly require any smoothness of the paths, but if they satisfy the two-point bound-
ary value problem in (11)–(14), they will automatically be smooth as well as periodic with period q. Analogous
to the map case, we define a distance between two ordered pairs n = (x,a) and g = (y,b) in the orbit cross
parameter space X� R as
dðn; gÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

i¼1

Z 1

t¼0

kxiðtÞ � yiðtÞk
2
2 dt þ ða� bÞ2

s
: ð10Þ
A set of N mesh points ni = (xi,bi) on the fundamental domain of our family of periodic solutions is deter-
mined by the following system of equations.
_xij ¼ T ijf ðxij; a; bjÞ; ð11Þ
x1jð0Þ ¼ xqjð1Þ; ð12Þ
x2jð0Þ ¼ x1jð1Þ; ð13Þ

..

.

xqjð0Þ ¼ xq�1;jð1Þ; ð14Þ
P 1ðxÞ ¼ 0; ð15Þ
dðnj; njþ1Þ ¼ h; j ¼ 1; . . . ;N � 1; ð16Þ
dðnN ; �n1Þ ¼ h; ð17Þ
P 2ðnÞ ¼ 0: ð18Þ
The time-intervals for the segments xij(t) have been rescaled to 1 and the values of the Tij are the true time-
intervals of the q segments xij(t/Tij � i + 1) of period-q solutions to the original ODE (2), and these Tij can be
different for each index i and j. Eqs. (11)–(14) are the boundary value problem for the qN n-dimensional un-
knowns xij, i = 1, . . . ,q, j = 1, . . . ,N. In our implementation we solve this boundary value problem by colloca-
tion. Eq. (15) is a set of qN scalar phase conditions fixing the initial points x1j(0), . . . ,xqj(0) on the path
segments. Eqs. (16)–(17) are also a set of N scalar equidistribution conditions. Eq. (18) is the same scalar con-
dition as (9). The phase conditions (15) should be chosen carefully because the choice of initial points affects
the distance between the periodic solutions xÆj in our metric, even though it does not affect the geometric paths
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traced out by the periodic orbit in the phase space. A good condition seems to be to place all initial points
x1j(0), . . . ,xqj(0) in the same hyperplane. Together, Eqs. (15)–(18) specify qN + N + 1 equations for the
qN + N + 1 + 1 parameters T11, . . . ,TqN, b1, . . . ,bN, a and h.
2.3. Convergence

The computation of a smooth family of periodic orbits as described in Sections 2.1 and 2.2 is an interpo-
lation problem. We compute a piece-wise linear interpolation of the smooth ‘‘functions’’ n(s) = (xq(s),b(s)) for
maps and n(s) = ([x(Æ)](s),b(s)) for ODEs. Since any smooth function can uniformly be approximated by a
continuous piecewise linear function, Weierstraß’ approximation theorem implies that the proposed method
is uniformly convergent for h � lN�1! 0, where l is the total arc-length of the family. That h ¼ OðN�1Þ is
a basic result for continuously differentiable functions and the convergence is of order Oðh2Þ for two times con-
tinuously differentiable functions.

If we use piecewise linear interpolation, then the boundaries of an Arnol 0d tongue are approximately given
by min{bi} and max{bi}. In this case we always have the inclusion a 6 min{bi} 6 max{bi} 6 b, where a and b

denote the true left and right boundary. Note that the mesh points computed by our algorithm lie on the fam-
ily within numerical accuracy, the arc-length condition merely serves as a distribution condition. Hence, we
can also use higher-order interpolation in the arc-length for the functions n, for example, Fourier interpola-
tion, as a post-processing step and compute the boundaries with high precision, but thereby possibly losing the
inclusion property mentioned above.
2.4. Adaptation

The two algorithms (4)–(9) and (11)–(18) are suited for an intrinsic form of adaptation. Both systems con-
tain a distribution condition, the arc-length conditions (7), (8) and (16), (17), respectively, which we can
replace by a different one. In the present case, we follow the strategy of equidistribution of the interpolation
error per line segment, which by standard interpolation theory is approximately proportional to
ðkn00i k þ kn

00
iþ1kÞh2

i =16, where n00i is the second derivative with respect to arc-length, kn00i k ¼ dð0; n00i Þ and hi is
the length of the line segment connecting the two consecutive mesh points ni and ni+1.

We have to take into account the situation that our solution curve may have segments that are (virtually)
straight lines, that is, segments where in00(s)i is (almost) zero. Hence, an equidistribution with respect to the
interpolation error could produce a mesh for which the distances d(ni,ni+1) do not uniformly tend to zero
as N goes to infinity. In other words, we may lose convergence. To overcome this problem, we replaced
(7), (8) and (16), (17) by the equidistribution condition
RiðnÞ ¼ r; i ¼ 1; . . . ;N ;
where r is the value of the equidistributed error and the Ri(n) are computed according to:
RiðnÞ ¼
h2

i

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2 þ rkn00i k

2
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� rÞ2 þ rkn00iþ1k

2
2

q� �
;

n00i ¼
2

hi þ hi�1

niþ1 � ni

hi
� ni � ni�1

hi�1

� �
;

hi ¼ dðni; niþ1Þ:
Here, the parameter r 2 [0, 1] changes the behaviour of the adaptation. For r = 0 we obtain the original dis-
tribution with constant step sizes hi and for r = 1 the interpolation error becomes equidistributed. Any other
value of r leads to a mixed strategy, which guarantees a uniform decrease of the step sizes hi for N!1 as well
as a denser allocation of mesh points in regions with higher interpolation error. As an illustrative test example
we computed the solution curve of the equation (2x)8 + y8 = 1 depicted in Fig. 4 using different values of r.
Apparently, the choice of r = 0.5 seems to be a good compromise between full adaptation and a not too sparse
overall distribution of mesh points.
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3. Computation of quasi-periodic arcs

A variety of algorithms for the computation of invariant circles of maps have been proposed, some use a
suitably generalised Poincaré map [23,24], some are based on ‘‘ad-hoc’’ parametrisations [9,13,15,25,30,38]
and others involve the Denjoy parametrisation explained below; see [10,11,19,20,22]. We use a method based
on the Denjoy parametrisation for two reasons: this parametrisation is unique up to a phase shift, which leads
to a particularly simple algorithm; see also [36]. Furthermore, it contains the rotation number explicitly. The
latter property is a prerequisite for applying Newton’s method, because the rotation number is not a differen-
tiable function of the two parameters a and b. Hence, a condition like rot(a,b) = . would effectively prevent
the use of Newton’s method.

The methods for maps in [10,19,20,22] have also been used to compute tori of ODEs by replacing the map
with the solution of an initial value problem. For completeness, we briefly review these methods for one-
dimensional tori, that is, for invariant circles, and show how to replace the invariance condition for maps
by a two-point boundary value problem that can be solved with the method of collocation. Note that this
approach is different from the initial value problem technique mentioned above, which leads to a single-shoot-
ing method that is known to be ill-posed in many cases, in particular, for stiff equations. In what follows, the
term ‘‘torus’’ always refers to either an invariant circle of a map or an invariant two-torus of an ODE.

A quasi-periodic invariant circle with fixed irrational rotation number . of the map (1), x ´ f(x,a,b), is a
solution of the invariance equation u(h + 2p.) = f(u(h),a,b). That is, the map restricted to the invariant circle
{u(h)|h 2 [0, 2p]} is conjugate to a rigid rotation with rotation number .. We approximate u by a Fourier poly-
nomial of order N, that is, uN ðhÞ ¼

PN
k¼�N ckejkh, where h lies on the unit circle parametrised over (�p,p] and j

denotes the imaginary unit. We compute the coefficients ck by collocation, that is, we introduce a uniform
mesh hk = (k + 1)p/(N + 1), k = �N, . . . ,N, on the unit sphere and require that the invariance condition holds
on the mesh points. This leads us to the system of nonlinear equations
uN ðhk þ 2p.Þ ¼ f ðuN ðhkÞ; a; bÞ; ð19Þ
P ðuN Þ ¼ 0; ð20Þ
where (20) is again a scalar phase condition. This are n(2N + 1) + 1 equations for the n(2N + 1) unknown
Fourier-coefficient vectors ck and the two parameters a and b. Note that we implicitly exploited that c�k ¼
�ck in this count.
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It is essential for this approach that the irrational rotation number is kept constant. In that case the con-
tinuation follows a smooth quasi-periodic arc in the parameter plane. If one would use system (19), (20) to
perform a one-parameter continuation with . taken as a variable and either a or b fixed, then this path would
intersect Arnol 0d tongues. Hence, the rotation number assumes rational values on an open and dense set along
this path. This leads to a failure of the algorithm because the Denjoy parametrisation exists only for invariant
circles with irrational rotation number; see [36] for example computations illustrating this effect.

The invariance condition (19) for maps can be replaced by the two-point boundary value problem
_xk ¼ Tf ðxk; a; bÞ; ð21Þ
xkð0Þ ¼ uN ðhkÞ; ð22Þ
xkð1Þ ¼ uN ðhk þ 2p.Þ; ð23Þ
P 1ðxÞ ¼ 0; ð24Þ
P 2ðuN Þ ¼ 0; ð25Þ
for computing an invariant torus of the ODE (1), _x ¼ f ðx; a; bÞ. The variable T is the common return time of
all the solutions xk. Eq. (25) is the same scalar condition as (20) and condition (24) is a scalar phase condition
to fix an initial point on some solution of the set x = {x�N, . . . ,xN}. Together, Eqs. (21)–(23) are a 2n(N + 1)-
dimensional boundary value problem for the 2N + 1 n-dimensional unknown functions x�N(t), . . . ,xN(t) and
the 2N + 1 Fourier coefficient vectors c�N, . . . ,cN. Eqs. (24)–(25) specify two conditions for the three param-
eters T, a, and b. Note that we omitted the trivial ODEs _ck ¼ 0 that need to be included in (21)–(23) if one
wants to use standard continuation software for boundary value problems such as AUTO [16].

4. Examples

In this section, we consider three examples: an embedded Arnol 0d family in Section 4.1, a generic caricature
example in Section 4.2 and a system of two linearly coupled Van der Pol oscillators in Section 4.3; see also
Section 1. For all three examples we compute a large set of Arnol 0d tongues and companion quasi-periodic
arcs. The embedded Arnol 0d family is a two-dimensional map that has the unit circle as a global attractor
and its restriction to the unit circle is the well-known Arnol 0d family x ´ x + . + a sin2px (mod 1). The gen-
eric caricature family was studied in the prior papers [27,28,31,32] by computing resonance surfaces and their
projections to Arnold tongues. We compute here a much larger set of Arnol 0d tongues, using the algorithms
presented in this paper, and, for the first time, the companion quasi-periodic arcs. The system of two linearly
coupled Van der Pol oscillators is a classic example of an ODE showing quasi-periodic behaviour and phase-
locking; see, for example [17,34]. As explained in Section 1, the computation of high-period Arnol 0d tongues is
particularly difficult for this system and our computation of a large set of Arnol 0d tongues demonstrates the
success of our generalisation of the methods for planar maps discussed in [32]. All three examples have two
parameters a and b, where a is a coupling strength and b controls the rotation number or the natural frequen-
cies of the system.

To automate our computations we use two algorithms that produce sets of rotation numbers for which we
subsequently compute the Arnol 0d tongues and quasi-periodic arcs. The user needs only to specify the ‘‘level’’
of rotation numbers for each of these two computations, which are then performed in two loops in a single
computer program. The choice of rotation numbers for Arnol 0d tongues is straightforward using a so-called
Farey sequence of level l. We start with the sequence L0 = {0/1,1/1} and compute the sequence Lk+1 by insert-
ing all Farey sums of successive rationals of Lk into the sequence Lk, where the so-called Farey sum is defined
as o/p ¯ q/r: = (o + q)/(p + r). We obtain increasingly larger sets of rational numbers, the Farey sequences
L1 = {0/1, 1/2,1/1}, L2 = {0/1,1/3,1/2,2/3,1/1}, L3 = {0/1,1/4,1/3,2/5,1/2,3/5,2/3,3/4,1/1}, and so on.
Starting with L0 as above, it is guaranteed that all the fractions are reduced, any rational number is a member
of some sequence, the sequences are ordered and the denominator increases with the level l.

It is much more delicate to choose ‘‘as irrational as possible’’ rotation numbers for the continuation of
quasi-periodic invariant tori, because we cannot represent true irrationals as floating point numbers. We used
two sequences, the golden mean sequence and the symmetric golden mean sequence, that both worked well in
our examples. We start with the sequence G0 = {0,1} and compute the sequence Gk+1 by inserting all golden
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mean subdivisions x + g(y � x) of successive elements x and y of Gk into the set Gk, where g ¼
2=ð1þ

ffiffiffi
5
p
Þ � 0:6180 . . . We obtain the sequence of larger and larger sets G1 = {0,g, 1}, G2 = {0,g2,g,

3g � 1,1}, and so on. Note that these sets contain the noble sequence {g,g2,g3, . . .} as a sub-sequence. The
symmetric golden mean sequences are computed in the same way, except that we insert the two subdivisions
y � g(y � x) and x + g(y � x). Both sequences eventually contain the same rotation numbers, but we preferred
the symmetric variant for problems with some symmetry with respect to the rotation number . = 1/2, such as
the embedded Arnol 0d family.

The construction of initial solutions is straightforward for the embedded Arnol 0d family and the caricature
example. For a = 0 both maps have the unit circle as an attracting invariant circle and the maps restricted to
this circle reduce to a rigid rotation for any parameter b. Obtaining initial solutions for the system of two cou-
pled Van der Pol oscillators is more involved. For a = 0 the two oscillators decouple and the first one has a
limit cycle that is independent of b and can be approximated by a Fourier polynomial. We computed a
b-dependent Fourier approximation for the b-family of limit cycles of the second oscillator. With these two
approximations at hand, we can construct approximate initial solutions for the boundary value problems
(11)–(18) and (21)–(25) by superposition. We used the Poincaré condition _y ¼ 0 and all Tij were initially set
to T/q, where T is the period of the second oscillator. This initial approximation needs to be corrected by New-
ton’s method before starting the actual continuation with respect to a.

For all three examples the continuation of quasi-periodic invariant tori does not cause any problems. The
arc-length continuation of families of such tori is well defined as long as the quasi-periodic tori persist. We
compute curves of tori whose projections to the parameter plane are always one-dimensional. Difficulties arise
in the computation of resonance surfaces, because here the solution to our equations may cease to exist during
continuation due to geometric reasons. The arc-length continuation of constant-a cross-sections relies on the
fact that these sections are continuously changing single closed curves. The failure of this cross-sectional
assumption is illustrated with the caricature map example. This observation suggests that one might want
to use our algorithm for Arnol 0d tongues just for branch-switching from zero forcing or decoupling a = 0, that
is, to compute only the tips of the tongues and switch to fold continuation as soon as the variation in the
parameter b permits it. However, our implementation is designed to proceed as far as possible and the exam-
ples demonstrate that we are, in many cases, able to compute the entire resonance surface, and particularly the
p/q resonance surfaces for q P 5.
4.1. The embedded Arnol 0d family

Our first example is the classic text book example of the Arnol 0d family
x 7! xþ .þ a sin 2pxðmod 1Þ:

See, for example [1,4,14,17,21]. To get rid of the modulus, we rewrite the Arnol 0d family as a map acting on the
unit circle r = 1 in polar coordinates. We identify 2px with the angle h, which leads to the two-dimensional
map
h 7! hþ 2pbþ a sin h; ð26Þ
r 7! 1: ð27Þ
For the actual computations we used the composite map f := w � g � w�1, the embedded Arnol 0d family,
where g is the map defined by Eqs. (26), (27) and w is the transformation of polar into Cartesian coordinates.
For a and . we have the relations . = b and 2pa = a.

For completeness and comparison we state here some well-known results of circle-map theory about the
Arnol 0d family; see also [2,3,14,17,21]. We restrict the map (26)–(27) to the invariant circle r = 1, that is,
we consider only the map (26). Furthermore, we denote the set of rotation numbers depending on a and b
with .ab. The rotation number is unique for 0 6 a 6 1 and a closed interval for a > 1 [4]. The map (26) is dif-
feomorphic for 0 6 a < 1, homeomorphic for a = 1 and non-invertible for a > 1. The line a = 1 is called the
critical line. For a = 0 the map becomes a rigid rotation with rotation number .0b = b. That is, if b = p/q
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is rational, then every orbit is q-periodic, and if b is irrational, then every orbit is quasi-periodic and dense on
the circle.

Each point on the line a = 0 for which b = p/q is rational is the tip of a p/q-Arnol 0d tongue, which have the
shape of a wedge that opens up for increasing a; see also the left-hand panel in Fig. 5. The tongues have non-
zero width, but do not overlap for 0 < a 6 1, and the union of all tongues is an open-dense set in the parameter
plane. The width of the Arnol 0d tongues decreases rapidly as the period q increases. For parameter values in a
p/q Arnol 0d tongue, all orbits under (26) are asymptotic to a q-periodic orbit. From each point on the line
a = 0 for which b is irrational, a quasi-periodic arc emanates. These arcs sit in between the Arnol 0d tongues
and continue up to a = 1. The orbits under (26) are quasi-periodic and dense on the circle, and the map is
conjugate to a rigid rotation with rotation number .0b = b for parameter values along such an arc. The con-
jugacy is for a < 1 analytic, if this rotation number is Diophantine and of finite smoothness otherwise. Irra-
tional numbers that are not Diophantine are called Liouville numbers. The set of Liouville numbers in [0, 1] is
dense, but has zero measure. The conjugacy with a rigid rotation loses its smoothness as the critical line a = 1
is approached. The intersections of the quasi-periodic arcs with horizontal lines a = const. form a family Ca of
Cantor sets that have positive measure for 0 6 a < 1. In particular, we have l(C0) = 1 and l(Ca)! 0 as a! 1.
For a > 1, the maps are no longer homeomorphisms, and therefore not conjugate to an irrational rotation [4].
Consequently, our algorithm, which actually solves for a conjugacy with the irrational rotation, fails beyond
a = 1.

Arnold tongues. The results of our numerical computations are shown in the left-hand panel of Fig. 5. We
computed the Arnol 0d tongues for the rotation numbers in the Farey sequence L5 and the quasi-periodic arcs
for the rotation numbers in the symmetric golden mean sequence G2n{0,1}. Our computations accurately
reproduce the results of circle-map theory stated above. The uniform convergence of the method for Arnol 0d
tongues is illustrated in the right-hand panel of Fig. 5. By definition of the map, the projection of any resonance
surface of the embedded Arnol 0d family to the phase plane is the unit circle, and its constant a cross-sections of
resonance surfaces are cylinders for all values of a, even if a > 1. Therefore, the (a, s) parametrisation is globally
defined and it is not a problem to compute even larger sets of Arnol 0d tongues than the ones shown in Fig. 5.

The sequence of four pictures in Fig. 6 exemplifies part of the geometric structure of the 1/4 resonance sur-
face. The top-left-hand panel shows its projection to the parameter plane, which forms the 1/4 Arnol 0d tongue.
In the other three figures we gradually rotate the surface in the (a,b,x1)-space and the typical period-four sad-
dle-node structure becomes visible. The colouring of the surface is proportional to the deviation of b from its
average value in the corresponding constant-a cross-section and was added for comparison with Fig. 7.
Fig. 5. The left-hand panel shows the Arnol 0d tongues for the rotation numbers in the Farey sequence L5 (grey shaded) and quasi-periodic
arcs for the rotation numbers in the symmetric golden mean sequence G2n{0,1} (thick black) of the embedded Arnol 0d family. The uniform
convergence of our method is illustrated with the boundaries of the 2/5 tongue in the right-hand panel for the adaptation parameter
r = 0.5 and N = 10, 20, 30 and 40 mesh points. The boundaries for N = 30 and N = 40 are practically on top of each other.



Fig. 6. Different projections of the 1/4 resonance surface of the embedded Arnol 0d family. The projection onto the (b,a)-parameter plane
is the 1/4 Arnol 0d tongue (top left). In the other figures we added the coordinate x1. The colouring for fixed a is relative to the average
value of b and gives an impression of the variation of b.

Fig. 7. The 1/4 resonance surface projected onto the (x1,x2,a)-space (left). The colouring is as in Fig. 6 and gives an impression of the
variation of the surface in the fourth dimension b. In this projection the resonance surface becomes multi-valued for a > 1. This is clearly
illustrated in the right-hand figure, where the a = 1.5 family is depicted together with the shadow it casts onto the (x1,x2) plane. Compare
this view of the curve with the front edge of the surface in the lower-right picture in Fig. 6 – another view of the same curve.

F. Schilder, B.B. Peckham / Journal of Computational Physics 220 (2007) 932–951 943



944 F. Schilder, B.B. Peckham / Journal of Computational Physics 220 (2007) 932–951
We visualise the full four-dimensional geometry of the 1/4 resonance surface in the left-hand panel of
Fig. 7. The projection of the resonance surface onto the (x1,x2,a)-space is a cylinder with radius one. The col-
ouring is as in Fig. 6 and is proportional to its relative variation in the fourth dimension b. The self-intersec-
tion for a > 1 is due to projection. This is made clear in the right-hand panel of Fig. 7 where the constant-a
cross-section of the resonance surface for a = 1.5 is shown in the (x1,x2,b)-space. The vertical projection of
this curve onto the (x1,x2)-plane is the unit circle and the curve overlaps itself in this vertical projection, which
is indicated by the darker shadow that a fold-like structure casts.

The embedding of the Arnol 0d family was solely introduced to eliminate a modulo operation. Hence, one
can reduce the dimension of the embedding space of the resonance surfaces by omitting the trivial coordinate
r = 1. This would allow us to visualise the full geometry of these resonance surfaces in a three-dimensional
space. See a related study in [29].

Quasi-periodic arcs. From the results of our computations of quasi-periodic arcs we can produce an approx-
imation of the conjugacy under which the map (26) becomes a rigid rotation. Condition (19) can be read as
f � u = u � R.. In other words, our algorithm computes an approximation to the inverse of a conjugacy under
which the map f restricted to its invariant circle c becomes a rigid rotation, that is, h � f = R. � h with
h = (ujc)�1. The graphs of the conjugacy h for the golden mean rotation number and different values of a
are shown in Fig. 8 as black curves. The top two panels show this conjugacy for moderate values of a and
the bottom four panels show it for a sequence of a values that closely approach the critical line where a loss
of smoothness occurs. We plotted the graphs of the derivatives of h as grey curves in logarithmic scale and they
indeed seem to reflect this loss of smoothness. However, one has to exercise some care when interpreting these
figures, in particular, the bottom two panels. In our case we need to check if and in what sense our method
converged to a solution of the invariance condition (19). For our computations we used Fourier polynomials
of increasing orders N that are powers of two. The graphs are shown for N = 512, which was the highest such
order for that our Fourier polynomial for a = 0.9999 produced an invertible h. It seems that we reached the
accuracy limit of double precision arithmetic at this point.

To check convergence we computed the five different measures of approximation errors that are shown in
Table 1. Let us, for brevity, denote the l2-norm of the Fourier coefficients of a Fourier polynomial uN by R(uN)
and the l2-norm of the second half of the coefficients, that is, for jkj = N/2, . . . ,N, by r(uN). Then, the columns
in Table 1 show from left to right the parameter a, the absolute error r(uN) of uN, the relative error r(uN)/R(uN),
the absolute error rðu0N Þ of the derivative u0N ¼ duN=dh, the relative error rðu0NÞ=Rðu0N Þ and the logarithm of
rðu0N Þ. The error measures for uN in columns AE and RE indicate that the solution uN and, thus, the conju-
gacies h are reasonably well approximated. The Fourier coefficients decay sufficiently fast and the second
halves of the Fourier coefficients add up to at most 12% of the norm of uN (column AE). This picture changes
if we look at the derivative u0N . The relative error (column RED) in the last two rows is greater than 50%, that
is, there is no indication of decay. The absolute error of dh/d/ is at least of the same order of magnitude as the
absolute error of u0N (column AED). Hence, the error in dh/d/ might be as large as the function values of dh/
d/, which means that the graphs of dh/d/ in the bottom two panels of Fig. 8 are by no means reliable. How-
ever, this ‘‘loss of convergence’’ in the derivative is in itself an indicator of a loss of smoothness for a! 1.

4.2. A generic caricature example

Our second example is a two-parameter family of maps of the plane that is constructed to mimic the behav-
iour of the Poincare return map of a periodically forced oscillator. Alternatively, this caricature map can be
thought of as a periodically forced oscillator with ‘‘impulse forcing’’ by composing the time-one flow of an
autonomous flow in the plane with a map that provides a periodic ‘‘kick’’ to the solution. The kick is defined
as the identity for a = 0 and increasing in magnitude as a increases. More specifically, this map is defined as
H ðb;aÞ :¼ ga � hb;
where hb(x) is the time-one map of the following differential equation, given in polar coordinates:
_r ¼ rð1� r2Þ
1þ r2

; _h ¼ 2pbþ 1� r2

1þ r2
;
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Fig. 8. Graphs of the conjugacy h = h(/) (black curves) for different values of a under which the embedded Arnol 0d family becomes a rigid
rotation with golden mean rotation number. We used N = 512 Fourier modes to compute these figures. The dark diagonal line is the graph
of the identity and the light grey curves show the logarithm of the derivative h 0 = dh/d/ = dh/d/.
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Table 1
Estimated errors for the golden invariant circle approximated with N = 512 Fourier modes for different values of a

a AE RE AED RED LAED

0.5000 8.1841e � 07 1.4159e � 07 1.4792e � 05 2.5039e � 06 �4.83
0.7000 1.0475e � 06 1.6781e � 07 1.7399e � 05 2.5654e � 06 �4.76
0.9000 1.0822e � 04 1.5760e � 05 1.2783e � 03 1.4428e � 04 �2.89
0.9900 3.0418e � 01 4.0791e � 02 3.9073e + 00 2.5855e � 01 0.59
0.9990 8.2456e � 01 1.0782e � 01 1.1407e + 01 5.3253e � 01 1.06
0.9999 9.1878e � 01 1.1966e � 01 1.2907e + 01 5.6515e � 01 1.11

The columns from left to right show a, the absolute and relative error of the solution and the absolute, the relative and the logarithm of the
absolute error of the derivative of the solution.
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and ga is the map
α

Fig. 9.
and th
are the
ðx1; x2Þ 7! ð1� aÞðx1 � 1; x2Þ þ ð1; 0Þ:

Note that in this setup, b is not restricted to be positive, but is allowed to be any real number. So our param-
eter space is l ¼ ðb; aÞ 2 R� ½0; 1Þ.

For a = 0 the unit circle is invariant and attracting. The restriction of the caricature map to this circle is a
rigid rotation with rotation number b (mod 1). The invariant circle persists for sufficiently small forcing a > 0,
but the dynamics on the circle will change according to the Arnol 0d tongue scenario; see also Section 4.1.
Arnol 0d tongues emanate from the line a = 0 with their tips at points where b is rational, and quasi-periodic
arcs start at points for which b is an irrational. The left-hand panel of Fig. 9 shows the Arnol 0d tongues for the
rotation numbers in the Farey sequence L6, and the right-hand panel the quasi-periodic arcs for the rotation
numbers in the symmetric golden mean sequence G3n{0,1}.

To elaborate somewhat, we note that an oversimplified but useful crude description of the dynamics in the
caricature family is that the invariant circle that exists at a = 0 shrinks in size as a increases, and the rotation of
the phase space increases as b increases. For large enough a, any invariant circle or periodic orbit has disap-
peared, leaving only a globally attracting fixed point. This bifurcation generally happens along a Neimark–
Sacker curve (dashed black curve). This suggests that both the surface of invariant circles in the phase cross
parameter space corresponding to a continuation of an irrational arc, and the resonance surfaces correspond-
ing to the continuation of a tongue, are topological disks. This is corroborated in Fig. 10; see also [28,32].
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1/1 saddle-node curves computed by fold continuation.
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Exceptions are the period-two surfaces, which are Möbius strips, and the period-one surface, which is
unbounded since it is in the same fixed-point component as the repelling fixed point that continues from
the origin for the unforced oscillator.

The tongues in Fig. 9, connecting zero forcing amplitude to the Neimark–Sacker curve, provide a compar-
ison of the two Arnold tongue scenarios. We have been describing the local situation near zero forcing in this
paper. The closed curve of periodic orbits corresponding to a cross-section of a tongue near a Neimark–Sacker
curve is topologically the same as the cross-sections we have been computing and continuing from zero forcing
amplitude. The difference is that the closed curve shrinks to a point at the Neimark–Sacker curve, while it
remains as a ‘‘large’’ topological circle at the zero forcing point. This suggests that our algorithm could be
adapted to continuation from Neimark–Sacker curves as well. We hope to pursue this in the future. Also dif-
ferent in the two scenarios are the widths of the projections to the tongues in the parameter plane. The Nei-
mark–Sacker tongue boundaries have a tangency of order (q � 2)/2 [1,26,33,37], whereas the zero forcing
amplitude tongues have a nonzero opening angle [18]. Furthermore, the case of strong resonances (periods
1,2,3,4) is distinct in the Neimark–Sacker case [1,26,37].

Continuations of the arcs and tongues terminated for a variety of reasons, some because the complete res-
onance surface had been computed, and others due to limitations of our algorithm. Continuations that reach
the fixed point on the Neimark–Sacker curve in either of the two cases are complete; the global arc/tongue has
been computed. A close inspection of the quasi-periodic arcs’ approach to the Neimark–Sacker curve in the
right-hand part of Fig. 9 reveals that the arcs cross the Neimark–Sacker curve and turn to the right to finally
arrive at the Neimark–Sacker curve from above. This is due to a ‘‘Chenciner point’’ on the Neimark–Sacker
curve, at approximately (b,a) = (0.75,0.3), where the bifurcations change from supercritical to subcritical and
the arcs/tongues change from approaching the Neimark–Sacker curve from below to approaching from above
[12]. This poses no difficulties to arc-length continuation of the quasi-periodic arcs, which are all completely
computed. For the tongues, however, we make an additional cross-sectional assumption that fails to hold in
this and other situations. We require that the constant-a cross-section is circular, but in the region where the
tongues ‘‘bend back’’ we have a more complicated merging of two such circular sections, which is not repre-
sentable as a solution of our Eqs. (4)–(9); see Fig. 11.

The continuations that failed to be complete did so because the constant-a cross-sections ceased to be topo-
logical circles at some value of a. These failures included the tongues toward the right-hand edge of the Nei-
mark–Sacker curve which turn around and are headed down (in the (b,a) plane) as they approach the
Neimark–Sacker curve, and the strongly resonant cases that are pictured in Fig. 12. See [32] for alternative
parametrisations of resonance surfaces which do allow complete computation of tongues for the caricature
map.



4.3. Two coupled Van der Pol oscillators

As our final example we return to the system of two linearly coupled Van der Pol oscillators,
€xþ eðx2 � 1Þ _xþ x ¼ aðy � xÞ;
€y þ eðy2 � 1Þ _y þ ð1þ bÞy ¼ aðx� yÞ;
which we introduced at the beginning of this paper; see also [17,34,36]. The parameter e changes the non-linear
damping in the system, a is the coupling strength and b is a detuning parameter that controls the natural fre-
quency of the second oscillator. The oscillators decouple for a = 0 and their product is a normally attracting
invariant torus. This torus will survive for sufficiently small coupling strength and the two oscillators either
synchronise (phase-lock) or oscillate independently with incommensurate internal frequencies. Hence, we have
Arnol 0d tongues and quasi-periodic arcs emanating from the decoupling line a = 0. For large enough a one of
the internal frequencies becomes suppressed in an inverse Neimark–Sacker bifurcation where the torus col-



1/1

3/4

2/3

1/2 1/3
2/5

α

β
 10 8 6 4 2 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

1/2

1/1

3/4

2/3

3/5
1/3

3/8

2/5

3/7

� 10 8 6 4 2 0 0

 0.5

 1

 1.5

 2

 2.5

 3

Fidcoupled Van der Pol oscillators
0dthe resonance regions are organised in parameter space (right).

F. Schilder, B.B. Peckham / Journal of Computational Physics 220 (2007) 932…951949
and allows the computation of large sets of Arnol 0d tongues, including their tips. In the right-hand panel of
Fig. 13 we observe the typical distribution of Arnol 0d tongues that is induced by the self-similarity of Devil’s
staircase [14,21]; see also the left-hand panel in Fig. 9. Close to the strong resonances we find large regions in
parameter space for which we have predominantly quasi-periodic or desynchronised states, that is, the quasi-
periodic arcs cover a set with large relative measure.

Since the Arnol 0d tongues connect to a locus of Neimark–Sacker bifurcations (not shown), we experience dif-
ficulties computing the resonance surfaces of the strong resonances because they are not cylindrical close to the
Neimark–Sacker curve; see Section 4.2 for more details. However, except possibly for the tips near the line a = 0,
the boundaries of these tongues can be computed by fold continuation; compare the boundaries of the 1/1 tongue
in Fig. 1 and in the left-hand panel of Fig. 13. Combining both techniques we can obtain the complete picture.

5. Discussion and outlook

The computation of quasi-periodic invariant tori is a problem for which well-tested algorithms were already
available for some time [10,22], and a two-parameter continuation of quasi-periodic invariant tori was pro-
posed in [36]. The specific application of the algorithm [10,22] to form a two-point boundary value problem
for quasi-periodic tori of ODEs as described in Section 3 is new. We combined both techniques to construct a
novel method for computing quasi-periodic arcs in a two-parameter plane. It is an interesting and somewhat
surprising fact that it actually enables the computation of quasi-periodic invariant tori with standard contin-
uation software such as AUTO [16].

The computation of resonance surfaces presents a much harder problem and is the main topic of this paper.
A preliminary version of our algorithm (11)–(18) for ODEs was published earlier in [35]. Since then we made
many improvements, including the restriction to the fundamental domain, its extension to autonomous ODEs,
a more general phase condition, adaptation and the new distance (10) that now takes the full orbit into account.
These improvements resolved the computational problems observed in [35] for the 1/4 Arnol 0d tongue.

The (a, s) parametrisation proposed in this paper extends the applicability of the previous methods from
two-dimensional maps to general n-dimensional maps and ODEs. The (a, s) parametrisation is guaranteed
to work for small coupling amplitude, but has the limitations discussed in Section 4.2, namely, that it cannot
follow Arnol 0d tongues that ‘‘bend back’’ in parameter space and that it generally does not provide a global
parametrisation of 1/1, 1/2, 1/3, 2/3, 1/4 resonance surfaces, as was illustrated in Fig. 12. The first problem can
often be solved by moving from the constant-a cross-section to a cross-section normal to a two-dimensional
vector that reflects the average direction of the Arnol 0d tongue in parameter space. This should work for high-
period Arnol 0d tongues, since their projection to the two-parameter plane often behaves like a ‘‘thick curve’’.
Note that this modification seems straightforward but is not entirely trivial since the local parametrisation
may become problematic if the centre of the circle of curvature of one of the boundary curves lies within
�g. 13. The left-hand panel shows the results using our method for computing the same Arnol0tongues as in Fig. 1of the system of twofor e = 1. We can easily compute a larger set of Arnol
tongues, providing a more complete picture of how
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the tongue, which could happen at sharp turns. In that case, parts of the resonance surface may become cov-
ered multiple times and it is not clear how an arc-length continuation would behave.

A solution for the second problem was proposed in [32] by using a so-called (if(x) � xi,/) parametrisation
(/ = arg(f(x) � x)) for planar maps. This approach successfully solves the global parametrisation problem for
the caricature map, but this method no longer allows the straightforward computation of the boundaries of an
Arnol 0d tongue as the maximum and minimum of the parameter b with respect to arc-length. However, this
idea can also be generalised from the (a, s) parametrisation of Eqs. (4)–(9) to a ‘‘(if(x) � xi, s) parametrisa-
tion’’, where a is now treated as a variable like b:
xq
1j ¼ f ðxq

qj; aj; bjÞ;
xq

2j ¼ f ðxq
1j; aj; bjÞ;

..

.

xq
qj ¼ f ðxq

q�1;j; aj; bjÞ;
dðnj; njþ1Þ ¼ h; j ¼ 1; . . . ;N � 1;

dðnN ; �n1Þ ¼ h;

1

q

Xq

i¼1

kf ðxq
ij; aj; bjÞ � xq

ijÞk
2
2 ¼ c;

PðnÞ ¼ 0:
This is a system of nqN + N + N + 1 equations for the nqN + N + N + 2 unknowns xq
ij, aj, bj, h and c, where d

is a suitably defined distance. Note that the continuation parameter for computing the surface is c. This
(if(x) � xi, s) parametrisation may provide a valid global parametrisation in very general situations. In partic-
ular, it appears to be a good parametrisation, at least locally, for continuing from a p/q resonant Neimark–
Sacker point by increasing c from zero.

Despite the limitations outlined above, the algorithms and their possible generalisations presented in this
paper are likely to work for many, if not most, practical applications. They are appealing because of their rel-
ative simplicity. All one needs is a one-parameter continuation software for two-point boundary value prob-
lems, for example AUTO [16].
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